
CS 4530: Fundamentals of Software Engineering

Module 4: A Few Design Patterns

Adeel Bhutta, Mitch Wand

Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

• By the end of this lesson, you should be able to
• Explain how patterns capture common solutions and

tradeoffs for recurring problems.

• Give 3 examples of design patterns and describe their
distinguishing characteristics

• Draw a picture or give an example to illustrate each one

2

What is a Pattern?

• A Pattern is a summary of a standard solution (or
solutions) to a specific class of problems.

• A pattern should contain
• A statement of the problem being solved
• A solution of the problem
• Alternative solutions
• A discussion of tradeoffs among the solutions.

• For maximum usefulness, a pattern should have a
name.
• So you can say “here I’m using pattern P” and people

will know what you had in mind.

3

Patterns help communicate intent

• If your code uses a well-known pattern, then the
reader has a head start in understanding your code.

4

Patterns are intended to be flexible

• We will not engage in discussion about whether a
particular piece of code is or is not a “correct”
instance of a particular pattern.

5

This week we will talk about the interaction
scale

6

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Design at the Interaction Level corresponds
to “OOD Design Patterns”

• Four guys in the 90’s wrote a book that lists a lot of
patterns.

• But this is not the be-all and end-all of patterns

• We’ll see patterns at lots of different levels.

7

The Interaction Scale: Examples

1. The Demand-Pull pattern

2. The Data-Push pattern aka the Observer* Pattern
or Listener Pattern

3. The Singleton Pattern*

8

*These are “official Design Patterns”
that you will see in Design Patterns
Books

Information Transfer: Push vs Pull

9

class Producer {
 theData : number
}

class Consumer {
 neededData: number
 doSomeWork () {
 doSomething(this.neededData)
 }
}

• How can we get a
piece of data from
the producer to
the consumer?

Pattern 1: consumer asks producer
(“data-pull")

10

class Producer {
 theData: number
 getData() { return this.theData }
}

class Consumer {
 constructor(private producer: Producer) { }
 neededData: number
 doSomeWork() {
 this.neededData = this.producer.getData()
 doSomething(this.neededData)
 }
}

• The consumer
knows about the
producer

• The producer has
a method that the
consumer can call

• The consumer
asks the producer
for the data

Example: Interface for a pulling clock

• The interface for a
simple clock

11

export default interface IpullingClock {

 /** sets the time to 0 */
 reset():void

 /** increments the time */
 tick():void

 /** returns the current time */
 getTime():number

}

IPullingClock.ts

simpleClockUsingPull.ts

12

import IClock from "./IPullingClock";

export class SimpleClock implements IClock {
 private time = 0
 public reset () : void {this.time = 0}
 public tick () : void { this.time++ }
 public getTime(): number { return this.time }
}

export class ClockClient {
 constructor (private theclock:IClock) {}
 getTimeFromClock ():number {
 return this.theclock.getTime()
 }
}

simpleClockUsingPull.ts

SimpleClock is the Producer

ClockClient is the Consumer

Testing the clock and the client

13

import { SimpleClock, ClockClient } from "./simpleClockUsingPull";
test("test of SimpleClock", () => {
 const clock1 = new SimpleClock
 expect(clock1.getTime()).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(clock1.getTime()).toBe(2)
 clock1.reset()
 expect(clock1.getTime()).toBe(0)
})
test("test of ClockClient", () => {
 const clock1 = new SimpleClock
 expect(clock1.getTime()).toBe(0)
 const client1 = new ClockClient(clock1)
 expect(clock1.getTime()).toBe(0)
 expect(client1.getTimeFromClock()).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(client1.getTimeFromClock()).toBe(2)
})

simpleClockUsingPull.test.ts

Pattern 2: producer tells consumer ("push")

14

class Producer {
 constructor(private consumer: Consumer) { }
 theData: number
 updateData(input) {
 this.theData = doSomethingWithInput(input)
 // notify the consumer about the change:
 this.consumer.notify(this.theData)
 }
}

class Consumer {
 neededData: number
 notify(dataValue: number) {
 this.neededData = dataValue
 }
 doSomeWork() {
 doSomething(this.neededData)
 }
}

• Producer knows the
identity of the
consumer

• The Consumer has a
method that
producer can use to
notify it.

• Producer notifies the
consumer whenever
the data is updated

• Probably there will
be more than one
consumer

This is called the Observer Pattern

• Also called "publish-subscribe pattern"

• Also called "listener pattern"

• The object being observed (the "subject") keeps a
list of the objects who need to be notified when
something changes.
• subject = producer = publisher

• When a new object wants to be notified when the
subject changes, it registers with ("subscribes to")
with the subject/producer/publisher
• observer = consumer = subscriber = listener

15

In this lecture, we’ll

try to stick to

Producer/Consumer.

The covey.town project

uses ‘Listener’

Interface for a clock using the Push pattern

16

export interface IPushingClock {

 /** resets the time to 0 */
 reset():void

 /**
 * increments the time and sends a .nofify message with the
 * current time to all the consumers
 */
 tick():void

 /** adds another consumer; initializes it with the current time */
 addListener(listener:IPushingClockClient):number
}

IPushingClockAndClients.ts

Interface for a clock listener

17

interface IPushingClockClient {
 /**
 * * @param t - the current time, as reported by the clock
 */
 notify(t:number):void
}

IPushingClockAndClients.ts

Interface for a clock listener

18

We could have called this onTick

interface IPushingClockClient {
 /**
 * * @param t - the current time, as reported by the clock
 */
 notify(t:number):void
}

IPushingClockAndClients.ts

A PushingClock class

19

export class PushingClock implements IPushingClock {
 private observers: IPushingClockClient[] = []
 public addListener(obs:IPushingClockClient): number {
 this.observers.push(obs);
 return this.time
 }
 private notifyAll() : void {
 this.observers.forEach(obs => obs.notify(this.time))
 }

 private time = 0
 reset() : void { this.time = 0; this.notifyAll() }
 tick() : void { this.time++; this.notifyAll() }

}

IPushingClockAndClients.ts

A Client

20

export class PushingClockClient implements IPushingClockClient
{
 private time:number
 constructor (theclock:IPushingClock) {
 this.time = theclock.addListener(this)
 }

 notify (t:number) : void {this.time = t}
 getTime () : number {return this.time}

}

IPushingClockAndClients.ts

Tests

21

test("single observer", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 expect(observer1.getTime()).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(observer1.getTime()).toBe(2)
 })

 test("Multiple Observers", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 const observer2
 = new PushingClockClient(clock1)
 const observer3
 = new PushingClockClient(clock1)
 clock1.tick()
 clock1.tick()
 expect(observer1.getTime()).toBe(2)
 expect(observer2.getTime()).toBe(2)
 expect(observer3.getTime()).toBe(2)
 })

PushingClock.test.ts

The observer gets to decide what to do with
the notification

22

export class DifferentClockClient implements IPushingClockClient {

 /** TWICE the current time, as reported by the clock */
 private twiceTime:number

 constructor (theclock:IPushingClock) {
 this.twiceTime = theclock.addListener(this) * 2
 }

 /** list of all the notifications received */
 public readonly notifications : number[] = [] // just for fun

 notify(t: number) : void {
 this.notifications.push(t)
 this.twiceTime = t * 2 }

 getTime() : number { return (this.twiceTime / 2) }
}

Better test this, too

23

test("test of DifferentClockClient", () => {
 const clock1 = new PushingClock()
 const observer1 = new DifferentClockClient(clock1)
 expect(observer1.getTime()).toBe(0)
 clock1.tick()
 expect(observer1.getTime()).toBe(1)
 clock1.tick()
 expect(observer1.getTime()).toBe(2)
 })

Push vs. Pull: Tradeoffs

PULL PUSH
The Consumer knows about the
Producer

Producer knows about the Consumer(s)

The Producer must have a method that
the Consumer can call

The Consumer must have a method that
producer can use to notify it

The Consumer asks the Producer for the
data

Producer notifies the Consumer whenever the
data is updated

Better when updates are more frequent
than requests

Better when updates are rarer than requests

24

Details and Variations

• How does the consumer get an initial value?
• Here we’ve had the producer supply it when the

consumer registers

• Should there be an unsubscribe method?

• What data should be passed with the notify
message?

• How does the producer store its registered
consumers?
• If many consumers, this could be an issue

• “There’s a package for that”

25

Typed Emitters

26

import { EventEmitter } from "events"
import TypedEmitter from "typed-emitter"

type ClockEvents = {
 reset: () => void
 tick: (time: number) => void, // carries the current time
}

IEmittingClockAndClients.ts

Using an emitter

27

class SampleEmitterServer {
 private emitter = new EventEmitter as TypedEmitter<ClockEvents>
 public getEmitter():TypedEmitter<ClockEvents> {return this.emitter}
 public demo() {
 this.emitter.emit('tick', 1); this.emitter.emit('reset')
 }
}

class SampleEmitterClient {
 constructor (server:SampleEmitterServer) {
 const emitter = server.getEmitter()
 emitter.on('tick', (t:number) => {console.log(t)})
 emitter.on('reset', () => {console.log('reset')})
 }
}

Interface for a clock using an emitter

28

export interface IEmittingClock {

 /** resets the time to 0 */
 reset():void

 /**
 * increments the time and sends a .nofify message with the
 * current time to all the consumers
 */
 tick():void

 /** adds another listener; returns the clock's emitter */
 addListener(): TypedEmitter<ClockEvents>
}

EmittingClock

29

export class EmittingClock implements IEmittingClock {

 private time = 0

 private emitter = new EventEmitter as TypedEmitter<ClockEvents>

 reset(): void { this.time = 0; this.emitter.emit('reset') }

 tick(): void { this.time++; this.emitter.emit('tick', this.time) }

 public addListener(): TypedEmitter<ClockEvents> { return this.emitter }

}

EmittingClockClient

30

export class EmittingClockClient {
 private time = 0 // time is not accurate until the next tick
 constructor(theclock: IEmittingClock) {
 const clock: TypedEmitter<ClockEvents> = theclock.addListener()
 // set up event listeners
 clock.on('tick', (t: number) => { this.time = t })
 clock.on('reset', () => { this.time = 0 })
 }

 getTime(): number { return this.time }
}

Pattern #3: The Singleton Pattern

• Maybe you only want one clock in your system.

• The factory needn't return a fresh clock every time.

• Just have it return the same clock over and over
again.

31

Here’s the behavior we expect

32

import ClockFactory from './singletonClockFactory'

test("actions on clock1 should be visible on clock2", () => {
 const clock1 = ClockFactory.instance()
 const clock2 = ClockFactory.instance()
 expect(clock1.getTime()).toBe(0)
 expect(clock2.getTime()).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(clock1.getTime()).toBe(2)
 expect(clock2.getTime()).toBe(2)
 clock1.reset()
 expect(clock1.getTime()).toBe(0)
 expect(clock2.getTime()).toBe(0)

})

singletonClockFactory.test.ts

Solution: Use a first-time through switch
and a private constructor

33

import IClock from './IPullingClock'

class Clock1 implements IClock {
 // implementation of IClock
}

export default class SingletonClockFactory {
 private static theClock : IClock | undefined
 private constructor () {SingletonClockFactory.theClock = undefined}

 public static instance () : IClock {
 if (SingletonClockFactory.theClock === undefined) {
 SingletonClockFactory.theClock = new Clock1
 }
 return SingletonClockFactory.theClock
 }
}

singletonClockFactory.ts

Describing your design using these
vocabulary words

When I create an object that needs a clock, I ask
the master clock factory to issue me a clock, and
then I have my new object register itself with the
clock.
The master clock updates my object whenever the
master clock changes.
The master clock also sends my object an update
message when it registers, so my object will always
have the latest time.

34

Discussing your design

35

I have a lot of objects, and
they each check the time
very often. If they were
constantly sending
messages to the master
clock, that would be a big
load for it. I sat down with
Pat, who is building the
master clock, and we
agreed on this design.

Why did you choose this
design?

Discussing your design (2)

36

Pat told me that the master
clock is a singleton, so they
will all be getting the same
time.

How do you know that all of
your objects will get the right
time?

The Discussion (3)

37

That's something that
happens in the module that
exports the master clock.
Pat is building that module.
Pat says it's not hard, but
they will show me how to do
it in a couple of weeks.

Who is responsible for
keeping the master clock up
to date?

The Discussion (4)

38

The clock factory exports a
class with an interface that
only allows me to register.
The interface doesn’t
provide me with a method
for ticking the clock.

What's to prevent you from
ticking the master clock
yourself?

Learning Goals for this Lesson

• By the end of this lesson, you should be able to
• Explain how patterns capture common solutions and

tradeoffs for recurring problems.

• Give 3 examples of design patterns and describe their
distinguishing characteristics

• Draw a picture or give an example to illustrate each one

39

	The Interaction Scale
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 4: A Few Design Patterns
	Slide 2: Learning Goals for this Lesson
	Slide 3: What is a Pattern?
	Slide 4: Patterns help communicate intent
	Slide 5: Patterns are intended to be flexible
	Slide 6: This week we will talk about the interaction scale
	Slide 7: Design at the Interaction Level corresponds to “OOD Design Patterns”
	Slide 8: The Interaction Scale: Examples
	Slide 9: Information Transfer: Push vs Pull
	Slide 10: Pattern 1: consumer asks producer (“data-pull")
	Slide 11: Example: Interface for a pulling clock
	Slide 12: simpleClockUsingPull.ts
	Slide 13: Testing the clock and the client
	Slide 14: Pattern 2: producer tells consumer ("push")
	Slide 15: This is called the Observer Pattern
	Slide 16: Interface for a clock using the Push pattern
	Slide 17: Interface for a clock listener
	Slide 18: Interface for a clock listener
	Slide 19: A PushingClock class
	Slide 20: A Client
	Slide 21: Tests
	Slide 22: The observer gets to decide what to do with the notification
	Slide 23: Better test this, too
	Slide 24: Push vs. Pull: Tradeoffs
	Slide 25: Details and Variations
	Slide 26: Typed Emitters
	Slide 27: Using an emitter
	Slide 28: Interface for a clock using an emitter
	Slide 29: EmittingClock
	Slide 30: EmittingClockClient
	Slide 31: Pattern #3: The Singleton Pattern
	Slide 32: Here’s the behavior we expect
	Slide 33: Solution: Use a first-time through switch and a private constructor
	Slide 34: Describing your design using these vocabulary words
	Slide 35: Discussing your design
	Slide 36: Discussing your design (2)
	Slide 37: The Discussion (3)
	Slide 38: The Discussion (4)
	Slide 39: Learning Goals for this Lesson

